1、步進掃描
試樣每轉動一步(固定的Δθ)就停下來,測量記錄系統開始測量該位置上的衍射強度。強度的測量也有兩種方式:定時計數方式和定數計時方式。然后試樣再轉過一步,再進行強度測量。如此一步步進行下去,完成角度范圍內衍射圖的掃描。用記錄儀記錄衍射圖時,采用步進掃描方式的優點是不受計數率表RC的影響,沒有滯后及RC的平滑效應,分辨率不受RC影響;尤其它在衍射線強度極弱或背底很高時特別有用,在兩者共存時更是如此。因為采用步進掃描時,可以在每個θ角處作較長時間的計數測量,以得到較大的每步總計數,從而可減小計數統計起伏的影響。
步進掃描一般耗費時間較多,因而須認真考慮其參數。選擇步進寬度時需考慮兩個因素:一是所用接收狹縫寬度,步進寬度至少不應大于狹縫寬度所對應的角度;二是所測衍射線線形的尖銳程度,步進寬度過大則會降低分辨率甚至掩蓋衍射線剖面的細節。為此,步進寬度不應大于zui尖銳峰的半高度寬的1/2。但是,也不宜使步進寬度過小。步進時間即每步停留的測量時間,若長一些,可減小計數統計誤差,提高準確度與靈敏度,但將損失工作效率。
2、定速連續掃描
試樣和接收狹縫以角速度比1:2的關系勻速轉動。在轉動過程中,檢測器連續地測量X射線的散射強度,各晶面的衍射線依次被接收。計算機控制的衍射儀多數采用步進電機來驅動測角儀轉動,因此實際上轉動并不是嚴格連續的,而是一步一步地(每步0.0025°)跳躍式轉動,在轉動速度較慢時尤為明顯。但是檢測器及測量系統是連續工作的。
連續掃描的優點是工作效率較高。例如以2θ每分鐘轉動4°的速度掃描,掃描范圍從20~80°的衍射圖15分鐘即可完成,而且也有不錯的分辨率、靈敏度和度,因而對大量的日常工作(一般是物相鑒定工作)是非常合適的。但在使用長圖記錄儀記錄時,記錄圖會受到計數率表RC的影響,須適當地選擇時間常數。
3、脈沖計數率
在進口X射線衍射儀方法中,X射線的強度用脈沖計數率表示,單位為每秒脈沖數(cps)。檢測器在單位時間輸出的平均脈沖數,直接決定于檢測器在單位時間接收的光子數。如果檢測器的量子效率為100%,而系統(放大器和脈沖幅度分析器等)又沒有計數損失(漏計),那么每秒脈沖數便是每秒光子數。
4、能量分辨
是指檢測器接收某一能量的量子(某一波長射線的光量子),所輸出脈沖信號的平均幅度與入射量子的能量成正比的特性。
5、閃爍檢測器
是各種晶體X射線衍射工作中通用性能的檢測器。它的主要優點是:對于晶體X射線衍射使用的X射線均具有很高甚至達到100%的量子效率;使用壽命長,穩定性好;此外,它和PC一樣,具有很短的分辨時間(10-7秒數量級),因而實際上不必考慮由于檢測器本身的限制所帶來的計數損失;它和PC一樣,對晶體衍射工作使用的軟X射線也有一定的能量分辨本領。因此通常X射線粉末衍射儀配用的是閃爍檢測器。
6、防散射狹縫
用來防止一些附加散射(如各狹縫光闌邊緣的散射,光路上其它金屬附件的散射)進入檢測器,有助于減低背景。防散射狹縫是光路中的輔助狹縫,它能限制由于不同原因產生的附加散射進入檢測器。例如光路中空氣的散射、狹縫邊緣的散射、樣品框的散射等等。此狹縫如果選用得當,可以得到zui低的背底,而衍射線強度的降低不超過2%。如果衍射線強度損失太多,則應改較寬的防散射狹縫。
7、接收狹縫
用來限制所接收的衍射光束的寬度。接收狹縫是為了限制待測角度位置附近區域之外的X射線進入檢測器,它的寬度對衍射儀的分辨能力、線的強度以及峰高/背底比有著重要的影響作用。
8、發散狹縫
用來限制發散光束的寬度。發散狹縫的寬度決定了入射X射線束在掃描平面上的發散角。
9、Sollar狹縫
是一組平行薄片光闌,實際上是由一組平行等間距的、平面與射線源焦線垂直的金屬簿片組成,用來限制X射線在測角儀軸向方向的發散,使X射線束可以近似的看作僅在掃描圓平面上發散的發散束。
10、測角儀
是X射線衍射儀上zui精密的機械部件,用來測量衍射角。
11、X射線管
衍射用的X射線管實際上都屬于熱電子二極管,有密封式和轉靶式兩種。前者zui大功率不超過2.5KW,視靶材料的不同而異;后者是為獲得高強度的X射線而設計的,一般功率在10KW以上。